भारत सरकार पृथ्वी विज्ञान मंत्रालय राज्य सभा अतारांकित प्रश्न सं. 2424 24 मार्च, 2022 को उत्तर दिए जाने के लिए

मौसम की अतिविषम स्थितियों की घटनाओं में वृद्धि

2424. डा. किरोड़ी लाल मीणा:

क्या पृथ्वी विज्ञान मंत्री यह बताने की कृपा करेंगे किः

- (क) क्या यह सच है कि पिछले दशक में देश और विश्व में मौसम की अतिविषम स्थितियों की घटनाओं में वृद्धि हुई है;
- (ख) यदि हाँ, तो अतिविषम मौसम की घटनाओं से हुई आकस्मिक दुर्घटनाओं/मौतों की संख्या और सम्पत्ति के अनुमानित नुकसान सहित पिछले दशक के दौरान देश में दर्ज की गई अतिविषम मौसम की घटनाओं का घटना-वार ब्यौरा क्या है;
- (ग) क्या सरकार ने अतिविषम मौसम की घटनाओं के प्रति अनुकूलन और शमन में सुधार करने के लिए कोई कदम उठाए हैं;
- (घ) यदि हाँ, तो तत्संबंधी ब्यौरा क्या है; और
- (ङ) क्या भारत को जलवायु परिवर्तन के प्रति अतिसंवेदनशील माना जाता है और यदि हाँ, तो देश के उन क्षेत्रों का ब्यौरा क्या है जो अतिविषम मौसम की घटनाओं के प्रति सर्वाधिक संवेदनशील हैं?

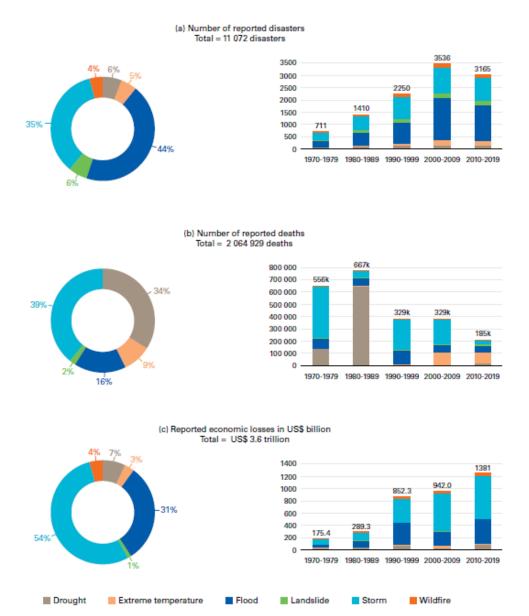
उत्तर विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान राज्य मंत्री (स्वतंत्र प्रभार) (डॉ. जितेंद्र सिंह)

(क)-(ख) जी, हाँ। डब्ल्यूएमओद्वारा प्रकाशित मौसम, जलवायु और जलीय चरम घटनाओंसे मृत्यु दर और आर्थिक नुकसान के एटलस(1970-2019) के अनुसार वैश्विक स्तर पर एक दशक में मौसम, जलवायु और जलीय खतरों के कारण दर्ज की गई आपदाओं की संख्या में वृद्धि हुई है (अधिक विवरण के लिए कृपया https://library.wmo.int/doc_num.php?explnum_id=10902 देखें)। इस रिपोर्ट के चित्र 1 से पता चलता है कि 50 वर्षों की अविध में आपदाओं की संख्या में पाँच गुना वृद्धि हुई है: 1970-1979 के लिए 711 आपदाएँ दर्ज की गईं, जबिक 2000-2019 में विश्व स्तर पर लगभग 3536 आपदाएं दर्ज की गईं।

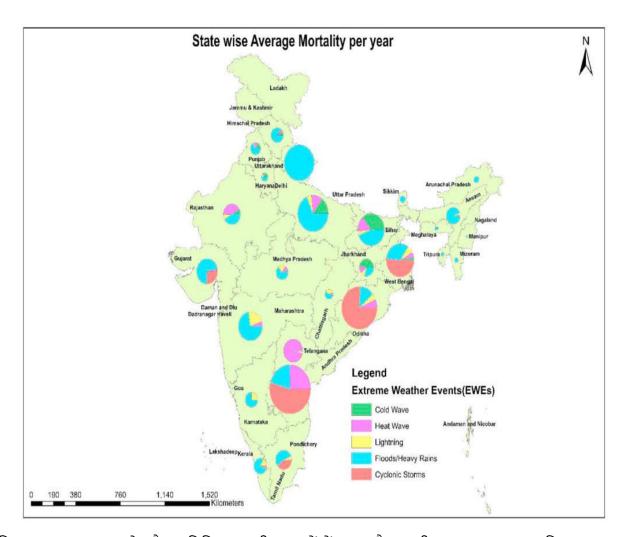
1997-2019 की अविध के दौरान चरम मौसम घटनाओं के अनुसार मृत्यु का विवरण चित्र 2 में दिया गया है। 2010 के बाद से हुई विभिन्न विनाशकारी मौसम की घटनाओं के कारण मृत्यु की जानकारी तालिका 1 में दी गई है।

(ग) – (घ) जी, हां।भारत मौसम विज्ञान विभाग (आईएमडी) जनता के साथ-साथ आपदा प्रबंधन प्राधिकरणों के लिए चरम मौसम की घटनाओं से संबंधित तैयारियों और शमन उपायों के लिए विभिन्न आउटलुक/पूर्वानुमान/चेतावनी जारी करता है।

भारत मौसम विज्ञान विभाग एक प्रभावी पूर्वानुमान रणनीति का अनुसरण करता है। जारी किए गए दीर्घाविध पूर्वानुमान (पूरी ऋतु के लिए) के बाद प्रत्येक गुरुवार को विस्तारित अविध पूर्वानुमान जारी किए जाते हैं जो चार सप्ताह की अविध के लिए मान्य होते हैं। विस्तारित अविध पूर्वानुमान के बाद,भारत मौसम विज्ञान विभाग बाद के दो दिनों की संभावना सिहत अगले पांच दिनों के लिए मान्य लघु से मध्यम अविध के पूर्वानुमान और चेताविनयां जारी करता है। राज्य स्तरीय मौसम विज्ञान केन्द्रों/ प्रादेशिक मौसम विज्ञान केंद्रों द्वारा जिला और स्टेशन स्तर पर लघु से मध्यम अविध के पूर्वानुमान और चेताविन जारी की जाती है जो अगले पांच दिनों के लिए मान्य हैतथा इन्हें एक दिन में दो बार अपडेट किया जाता है। लघु से मध्यम अविध के पूर्वानुमान के बाद, सभी जिलों तथा 1089 शहरों और कस्बों के लिए तीन घंटे (तत्काल पूर्वानुमान) तक प्रतिकूल मौसम की बहुत कम अविध का पूर्वानुमान जारी किया जाता है। इनतत्काल पूर्वानुमानों को प्रत्येक तीन घंटे में अद्यतन किया जाता है।


राष्ट्रीय मौसम पूर्वानुमान केंद्र, आईएमडी मुख्यालय से 36 मौसम विज्ञान उप-मंडलों के लिए पूर्वानुमान जारी किया जाता है और इसे दिन में चार बार अद्यतन किया जाता है। राज्य स्तरीय मौसम विज्ञान केंद्रों और प्रादेशिक मौसम विज्ञान केंद्रों द्वारा जिला स्तर और स्टेशन स्तर पर पूर्वानुमान और तत्काल पूर्वानुमान जारी किए जाते हैं।

चेतावनी जारी करते समय, संभावित प्रतिकूल मौसम के प्रभाव को सामने लाने तथा आपदा प्रबंधन को आसन्न आपदा मौसम घटना के संबंध में की जाने वाली कार्रवाई के बारे में संकेत देने के लिए उपयुक्त कलर कोड का उपयोग किया जाता है। हरा रंग किसी चेतावनी का संकेतक नहीं है इसलिए किसी कार्रवाई की आवश्यकता नहीं है, पीला रंग सतर्क रहने और अद्यतन जानकारी प्राप्त करने के लिए संकेत है, नारंगी रंग सतर्क रहने और कार्रवाई करने के लिए तैयार रहने के लिए है जबिक लाल रंग कार्रवाई करने के लिए संकेत देता है।


भारत मौसम विज्ञान विभाग प्रभाव आधारित पूर्वानुमान जारी करता है जो 'मौसम कैसा रहेगा' के स्थान पर 'मौसम का क्या प्रभाव होगा' का विवरण देता है। इसमें प्रतिकूल मौसम तत्वों से अपेक्षित प्रभावों का विवरण और प्रतिकूल मौसम के संपर्क में आने पर 'क्या करें और क्या न करें' के बारे में आम जनता के लिए दिशानिर्देश शामिल हैं। इन दिशानिर्देशों को राष्ट्रीय आपदा प्रबंधन प्राधिकरण के सहयोग से अंतिम रूप दिया गया है और इन्हें पहले ही चक्रवात, लू, गर्ज के तूफान और भारी वर्षा के लिए सफलतापूर्वक लागू किया जा चुका है।

पृथ्वी विज्ञान मंत्रालयने हाल ही में "भारतीय क्षेत्र में जलवायु परिवर्तन का आकलन" शीर्षक से एक (ड.) परिवर्तन रिपोर्ट प्रकाशित (http://cccr.tropmet.res.in/home/docs/cccr/2020_Book_AssessmentOfClimateChange OverT.pdf) . इस रिपोर्ट में मानव-प्रेरित जलवायु परिवर्तन के प्रभावों पर प्रकाश डाला गया है। भारत में ग्रीष्मकालीन मानसून वर्षा (जून से सितंबर) में 1951 से 2015 तक लगभग 6% की गिरावट आई है, जिसमें भारत के गांगेय मैदानों और पश्चिमी घाटों में उल्लेखनीय कमी आई है। कई डेटासेट और जलवायु मॉडल सिमुलेशन के आधार पर एक उभरती आम सहमति हैकि उत्तरी गोलार्ध पर मानवजनित एरोसोल के विकिरण प्रभाव ने ग्रीन हाउस गैस (जीएचजी) वार्मिंग से अपेक्षित वर्षा वृद्धि को काफी हद तक ऑफसेट कर दिया है और गर्मियों में देखी गई मानसूनी वर्षा में गिरावट में योगदान दिया है। 1951–2014 के दौरान हिंदू कुश हिमालय में लगभग 1.3 ° C तापमान वृद्धि का अनुभव हुआ है। हिंदू कुश हिमालय के कई क्षेत्रों में हाल के दशकों में हिमपात में गिरावट और हिमनदों के सिकुड़ने की प्रवृत्ति भी देखी गई है। इसके विपरीत, अधिक ऊंचाई वाले काराकोरम हिमालय में सर्दियों में अधिक बर्फबारी हुई है, जिसने इस क्षेत्र को ग्लेशियर के सिकुडने से बचा लिया है। इस रिपोर्ट में आने वाले वर्षों में भारतीय क्षेत्र में वर्षा के पैटर्न में अनुमानित बदलाव पर भी प्रकाश डाला गया है। रिपोर्ट का मुख्य सारांश अनुलग्नक-॥ में दिया गया है।

अनुलग्नक-।

चित्र **1.** इस दशक में खतरे के प्रकार के अनुसार (क) आपदाओं की संख्या, (ख) मृत्यु की संख्या और (ग) आर्थिक नुकसान का वितरण

चित्र- 2. 1970-2019 के दौरान विभिन्न भारतीय राज्यों में चरम मौसम की घटनावार मृत्यु का वितरण। गोले का आकार प्रत्येक राज्य की औसत मृत्यु को दर्शाता है, जबकि गोले के विभिन्न क्षेत्र विभिन्न चरम मौसम की घटनाओं के कारण मृत्यु को दर्शाते हैं।

भारत में 2010 के बाद से हुई विभिन्न आपदाकारी मौसम घटनाओं के कारण मृत्यु की जानकारी **तालिका 1** में दी गई है।

	वर्ष (2010-2021)में आपदाकारी मौसम घटनाओं के कारण मृत्यु											
वर्ष	हिम पात	शीत लहर	लू	अंधड़	झंझा	आंधी	आका शील बिजली	गर्जके साथतू फान	ओ लावृ ष्टि	बाढ़औ रभारीव र्षा	चक्रवा तीतूफा न	कुल (संपू र्ण वर्ष)
2021	20	11			4	5	730	61	1	760	174	1766
2020	22	162	25	6	13	14	652	506		995	119	2514
2019	65	291	505	3	6	25	415	348	2	1297	60	3017
2018	18	280	33		8	237	342	655	8	1099	157	2837
2017	38	51	375	15	11	5	840	289	4	1077	46	2751
2016	22	42	510	8	3	11	670	216	28	714	34	2258
2015	12	18	2081	1	5	30	498	324	39	917	94	4019
2014	62	58	547	9	3	51	352	246	35	953	46	2362
2013	30	271	1433	1	3	1	326	327	54	5528	50	8024
2012	31	139	729	5	5	5	434	190		395	61	1994
2011	14	722	12		4	21	177	331		654	46	1981
2010	25	450	269		3	41	431	373	45	1058	22	2717

आकलन रिपोर्ट की मुख्य बातें

इस पुस्तक के 12 अध्यायों पर आधारित क्षेत्रीय जलवायु प्रणाली की परिवर्तनशीलता और परिवर्तन का सारांश इस प्रकार है।

वैश्विक जलवायु में देखे गए परिवर्तन

पूर्व-औद्योगिक काल से वैश्विक औसत तापमान में लगभग 1 डिग्री सेल्सियस की वृद्धि हुई है। इस परिमाण और तापन की दर को केवल प्राकृतिक परिवर्तनों से स्पष्ट नहीं किया जा सकता है और इसमें मानवीय गितविधियों के कारण होने वाले परिवर्तनों को आवश्यक रूप से ध्यान में रखा जाना चाहिए। औद्योगिक अविध के दौरान ग्रीनहाउस गैसों, एरोसोल और भूमि उपयोग और भूमि कवर (एलयूएलसी) में परिवर्तन ने वायुमंडलीय संरचना को काफी हद तक बदल दिया हैऔर फलस्वरूप ग्रहीय ऊर्जा संतुलन में परिवर्तन हुआ है तथा इस प्रकार वर्तमान में जलवायु परिवर्तन के लिए मुख्य रूप से जिम्मेदार हैं।1950 के दशक के बाद से तापन ने पहले से ही विश्व स्तर पर मौसम और जलवायु की चरम घटनाओं में उल्लेखनीय वृद्धि में योगदान दिया है, जैसे (लू. सूखा, भारी वर्षा और प्रचंड चक्रवात), वर्षा और हवा के पैटर्न में बदलाव (वैश्विक मानसून प्रणालियों में बदलाव सहित), तापन और वैश्विक महासागरों का अम्लीकरण, समुद्री बर्फ और ग्लेशियरों का पिघलना, समुद्र का बढ़ता स्तर तथा समुद्री और स्थलीय पारिस्थितिक तंत्र में परिवर्तन।

वैश्विक जलवायु में अनुमानित परिवर्तन

वैश्विक जलवायु मॉडलों में इक्कीसवीं सदी और उससे बाद के दौरान मानव-प्रेरित जलवायु परिवर्तन की निरंतरता का अनुमान लगाया गया है। यदि वर्तमान ग्रीन हाउस गैस उत्सर्जन दर बनी रहती है, तो इक्कीसवीं सदी के अंत तक वैश्विक औसत तापमान में लगभग 5 डिग्री सेल्सियस और संभवतः इससे अधिक वृद्धि होने की संभावना है। यहां तक कि यदि 2015 के पेरिस समझौते के तहत की गई सभी प्रतिबद्धताओं ("राष्ट्रीय स्तर पर निर्धारित योगदान" कहा गया है) को पूरा किया जाता है, तो यह अनुमान लगाया जाता है कि सदी के अंत तक ग्लोबल वार्मिंग 3 डिग्री सेल्सियस से अधिक हो जाएगी। हालांकि, पूरे ग्रह में तापमान वृद्धि एक समान नहीं होगी; विश्व के कुछ हिस्सों में वैश्विक औसत से अधिक ताप का अनुभव होगा। तापमान में इस तरह के बड़े बदलाव से जलवायु प्रणाली में पहले से चल रहे अन्य परिवर्तनों में तेजी आएगी, जैसे कि वर्षा के बदलते पैटर्न और तापमान में वृद्धि।

भारत में जलवायु परिवर्तन: देखे गए और अनुमानित परिवर्तन

भारत में तापमान में वृद्धि

1901-2018 के दौरान भारत के औसत तापमान में लगभग 0.7 डिग्री सेल्सियस की वृद्धि हुई है। तापमान में यह वृद्धि काफी हद तक ग्रीन हाउस गैस-प्रेरित तापन के कारण है, जोआंशिक रूप से मानवजनित एरोसोल तथाभूमि उपयोग और भूमि कवर में परिवर्तन के कारण ऑफसेट हुई है। इक्कीसवीं सदी के अंत तक, RCP8.5 परिदृश्य के तहत, भारत के औसत तापमान में हाल के अतीत (1976-2005 औसत) के सापेक्ष लगभग 4.4 डिग्री सेल्सियस वृद्धि होने का अनुमान है। युग्मित मॉडल अंतर-तुलना परियोजना चरण 5 (CMIP5) के जलवायु मॉडलों द्वारा किए गए अनुमान बहु मानकीकृत फोर्सिंग परिदृश्यों पर आधारित हैं जिन्हें रिप्रजेंटेटिव कंसंट्रेशन पाथवेज (RCP) कहा जाता है। प्रत्येक परिदृश्य ग्रीन हाउस गैसों, एरोसोल, और रासायनिक रूप से सक्रिय गैसों के पूर्ण सैट के उत्सर्जन और सांद्रता केसाथ-साथ इक्कीसवीं शताब्दी के दौरान भूमि उपयोग और भूमि कवर में परिवर्तन की एक समय श्रुंखला है, जोवर्ष 2100 में परिणामी रेडिएटिव फोर्सिंग(प्राकृतिक (जैसे, ज्वालामुखी विस्फोट) या मानव-प्रेरित (जैसे, जीवाश्म ईंधन के दहन से ग्रीन हाउस गैस) परिवर्तनों के कारण पृथ्वी के ऊर्जा बजट में असंतुलन का एक माप) से दिखाई देता है (आईपीसीसी 2013)। इस रिपोर्ट में दो सबसे सामान्य विश्लेषण किए गए परिदृश्य हैं "RCP 4.5" (एक मध्यवर्ती स्थिरीकरण मार्ग जिसके परिणामस्वरूप 2100 में 4.5 डब्ल्यू / एम 2 का विकिरण बल होता है) और "RCP 8.5" (एक उच्च सांद्रता मार्ग जिसके परिणामस्वरूप 2100 में 8.5 W/M2 विकिरण बल होता है)।

हाल के 30-वर्षों की अवधि (1986-2015) में, वर्ष के सबसे गर्म दिन और सबसे ठंडी रात के तापमान में क्रमशः 0.63 डिग्री सेल्सियस और 0.4 डिग्री सेल्सियस की वृद्धि हुई है।

इक्कीसवीं सदी के अंत तक, इन तापमानों में RCP 8.5 परिदृश्य के तहत, हाल के अतीत (1976-2005 औसत) में संबंधित तापमान के सापेक्ष क्रमशः लगभग 4.7 डिग्री सेल्सियस और 5.5 डिग्री सेल्सियस की वृद्धि का अनुमान है।

इक्कीसवीं सदी के अंत तक, RCP 8.5 परिदृश्य के तहत गर्म दिनों और गर्म रातों की घटनाओं की आवृत्ति में संदर्भ अविध 1976-2005 के सापेक्ष क्रमशः 55% और 70% की वृद्धि का अनुमान है।

1976-2005 की आधारभूत अविध की तुलना में RCP 8.5 परिदृश्य के तहत इक्कीसवीं सदी के अंत तक भारत में ग्रीष्मकाल (अप्रैल-जून) में लू की आवृत्ति 3 से 4 गुना अधिक होने का अनुमान है। लू की घटनाओं की औसत अविध भी लगभग दोगुनी होने का अनुमान है, लेकिन मॉडलों के बीच पर्याप्त प्रसार के साथ।

सतह के तापमान और आर्द्रता में संयुक्त वृद्धि के फलस्वरूप में, पूरे भारत में, विशेष रूप से भारत के गांगेय और सिंधु नदी घाटियों पर तिपश के बढ़ने की संभावना है।

हिंद महासागर का गर्म होना

उष्णकिटबंधीय हिंद महासागर के समुद्र की सतह के तापमान (एसएसटी) में 1951-2015 के दौरान औसतन 1 डिग्री सेल्सियस की वृद्धि हुई है, जो इसी अविध में वैश्विक औसत एसएसटी वार्मिंग 0.7 डिग्री सेल्सियस से काफी अधिक है। उष्णकिटबंधीय हिंद महासागर के ऊपरी 700 मीटर (OHC700) में महासागर की गर्मी में भी पिछले छह दशकों (1955-2015) में एक बढ़ती प्रवृत्ति दिखाई दी है, विशेष रूप सेपिछले दो दशकों (1998-2015) में तीव्र वृद्धि देखी गई है।

इक्कीसवीं सदी के दौरान, उष्णकटिबंधीय हिंद महासागर में एसएसटी और महासागरीय ताप में वृद्धि जारी रहने का अनुमान है।

वर्षा में परिवर्तन

भारत में ग्रीष्मकालीन मानसून वर्षा (जून से सितंबर) में भारत के गांगेय मैदानों और पश्चिमी घाटों में उल्लेखनीय कमी के साथ 1951 से 2015 तक लगभग 6% की गिरावट आई है। अनेक डेटासेटों और जलवायु मॉडल सिमुलेशनों के आधार पर एक उभरती हुई आम सहमित हैिक उत्तरी गोलार्ध पर मानवजनित एरोसोल बल के विकिरण प्रभावों ने ग्रीन हाउस गैस तापन वार्मिंग से अपेक्षित वर्षा वृद्धि को काफी हद तक ऑफसेट कर दिया है और गर्मियों में मानसून वर्षा में गिरावट में योगदान दिया है।

हाल की अविध में अधिक बार शुष्क अविध (1951-1980 के सापेक्ष 1981-2011 के दौरान 27% अधिक) और ग्रीष्म मानसून के मौसम के दौरान अधिक तीव्र आर्द्र अविध में एक बदलाव आया है। वायुमंडलीय नमी की मात्रा में वृद्धि के फलस्वरूप दुनिया भर में स्थानीयकृत भारी वर्षा की आवृत्ति में वृद्धि हुई है। मध्य भारत में, प्रति दिन 150 मिमी से अधिक वर्षा की तीव्रता के साथ दैनिक वर्षा की चरम घटनाओं की आवृत्ति में 1950-2015 के दौरान लगभग 75% की वृद्धि हुई।

निरंतर वैश्विक तापन और भविष्य में मानवजनित एरोसोल उत्सर्जन में प्रत्याशित कमी के साथ, CMIP5 मॉडल ने इक्कीसवीं सदी के अंत तक मानसून वर्षा के औसत और परिवर्तनशीलता में वृद्धि के साथ-साथ दैनिक वर्षा की चरम घटनाओं में पर्याप्त वृद्धि का अनुमान लगाया है।

सूखा

पिछले 6-7 दशकों के दौरान ऋतुनिष्ठ ग्रीष्म मानसूनी वर्षा में समग्र कमी के कारण भारत में सूखे की प्रवृत्ति बढ़ी है। 1951-2016 के दौरान सूखे की आवृत्ति और स्थानिक सीमा दोनों में उल्लेखनीय वृद्धि हुई है। विशेष रूप से, मध्य भारत, दिक्षण-पिश्चम तट, दिक्षणी प्रायद्वीप और उत्तर-पूर्वी भारत के क्षेत्रों में इस अविध के दौरान औसतन प्रति दशक 2 से अधिक सूखे पड़े। इसी अविध में सूखे से प्रभावित क्षेत्र में भी प्रति दशक 1.3% की वृद्धि हुई है।

मानसून की वर्षा में बढ़ी हुई परिवर्तनशीलता और गर्म वातावरण में जल वाष्प की बढी हुई मांग के कारण RCP 8.5 परिदृश्य के तहत इक्कीसवीं सदी के अंत तक जलवायु मॉडल अनुमानों में भारत में सूखे की स्थिति में आवृत्ति (>प्रति दशक 2 सूखे), तीव्रता और क्षेत्र में वृद्धि की उच्च संभावना का संकेत मिलता है।

समुद्र के स्तरमें वृद्धि

वैश्विक तापन के कारण महाद्वीपीय बर्फ के पिघलने और समुद्री जल के तापमान के बढ़ने के कारण विश्व स्तर पर समुद्र का स्तर बढ़ गया है। 1874-2004 के दौरान उत्तरी हिंद महासागर में समुद्र के स्तर में वृद्धि 1.06-1.75 मिमी प्रति वर्ष की दर से हुई और पिछले ढाई दशकों (1993-2017) में प्रति वर्ष 3.3 मिमी तक बढ़ गई है, जो वैश्विक औसत समुद्र-स्तर वृद्धि की वर्तमान दर के बराबर है।

इक्कीसवीं सदी के अंत में, RCP 4.5 परिदृश्य के तहत वैश्विक औसत वृद्धि के लिए लगभग 180 मिमी वृद्धि के तदनुरुपी अनुमान के साथ उत्तरी हिंद महासागर में स्टेरिक समुद्र का स्तर 1986-2005 के औसत के सापेक्ष लगभग 300 मिमी बढ़ने का अनुमान है।

उष्णकटिबंधीय चक्रवात

बीसवीं सदी (1951-2018) के मध्य से उत्तरी हिंद महासागर बेसिन के ऊपर उष्णकटिबंधीय चक्रवातों की वार्षिक आवृत्ति में उल्लेखनीय कमी आई है। इसके विपरीत, पिछले दो दशकों (2000-2018) के दौरान मानसून के बाद की ऋतु के दौरान बहुत प्रचंड चक्रवाती तूफानों की आवृत्ति में बहुत वृद्धि हुई है (प्रति दशक +1 चक्रवात)। हालांकि, इन प्रवृत्तियों पर मानवजनित तापन के स्पष्ट संकेत अभी सामने नहीं आए हैं।

इक्कीसवीं सदी के दौरान जलवायु मॉडल उत्तरी हिंद महासागर बेसिन में उष्णकटिबंधीय चक्रवातों की तीव्रता में वृद्धि का अनुमान लगाते हैं।

हिमालय में परिवर्तन

1951–2014 के दौरान हिंदू कुश हिमालय में लगभग 1.3 ° C तापमान वृद्धि का अनुभव किया गया है। हिंदू कुश हिमालय के अनेक क्षेत्रों में हाल के दशकों में हिमपात में गिरावट और हिमनदों के पीछे हटने की प्रवृत्ति देखी गई है। इसके विपरीत, अधिक ऊंचाई वाले काराकोरम हिमालय में सर्दियों में अधिक बर्फबारी हुई है, जिसने इस क्षेत्र में ग्लेशियर को सिकुड़ने से बचा लिया है।

इक्कीसवीं सदी के अंत तक, हिंदू कुश हिमालय पर वार्षिक औसत सतह के तापमान में RCP 8.5 परिदृश्य के तहत लगभग 5.2 डिग्री सेल्सियस की वृद्धि का अनुमान है। RCP 8.5 परिदृश्य के तहत CMIP5 वृहद विस्तार अनुमान मॉडलों के साथ इक्कीसवीं सदी के अंत तकहिंदू कुश हिमालय के ऊपर वार्षिक वर्षा में वृद्धि परन्तुबर्फबारी में कमीका संकेत देते हैं।

निष्कर्ष

बीसवीं सदी के मध्य से, भारत में औसत तापमान में वृद्धि; मानसून वर्षा में कमी; अत्यधिक तापमान और वर्षा की घटनाओं में वृद्धि, सूखे और समुद्र स्तरों में वृद्धि; तथा मानसून प्रणाली में अन्य परिवर्तनों के साथ-साथ प्रचंड चक्रवातों की तीव्रता में वृद्धि देखी गई है। इस बात के अकाट्य वैज्ञानिक प्रमाण हैं कि मानवीय गतिविधियों ने क्षेत्रीय जलवायु में इन परिवर्तनों को प्रभावित किया है।

इक्कीसवीं सदी के दौरान मानव-प्रेरित जलवायु परिवर्तन के तेजी से जारी रहने की संभावना है। विशेष रूप से क्षेत्रीय पूर्वानुमानों के संदर्भ मेंभविष्य के जलवायु अनुमानों की सटीकता में सुधार करने के लिए, पृथ्वी प्रणाली प्रक्रियाओं के ज्ञान में सुधार के लिए रणनीतिक दृष्टिकोण विकसित करना तथा प्रेक्षण प्रणालियों और जलवायु मॉडलों का विस्तार जारी रखना आवश्यक है।
