Monsoon driven changes as preserved in marine sediments off Gujarat and Konkan coasts during the past 20 Kyr

Name of the PI/Co-PI:
Professor M.K. Panigrahi, Professor Anil K. Gupta
Indian Institute of Technology, Kharagpur – 721 302

and

Dr. Rahul Mohan
National Center for Antarctic and Ocean Research
Vasco-da-Gama, Goa 403 804
Abstract in 300 words for possible publication on MoES Newsletter/ Website).

This study was taken up to understand decadal to century or millennial scale changes in the Indian monsoon as recorded in the marine sediments of the western continental margin of India. 900 samples were analysed from cores SK-243, I-1 (water depth 82m; 206 samples), SK-243, I-2 (water depth 344m; 245 samples), SK-240, 327 (water depth 73m; 128 samples), ABP-25, 03 (water depth 2847m; 100 samples), ABP-25, 04 (water depth 1730m; 100 samples), ABP-25, 05 (water depth 1914; 100 samples). Samples were processed using standard methods. For benthic foraminiferal faunal study, dry samples were sieved over 125 µm size sieve and split into suitable aliquots to obtain ~300 specimens of benthic foraminifera, whereas for planktic foraminiferal study, samples were dry-sieved over 149µm size sieve. Chronology is based on AMS 14C dates. Total Organic Carbon (TOC) was analyzed in wt % at TOC Laboratory of the Department of Geology & Geophysics, IIT, Kharagpur, to understand organic carbon flux to the seafloor. The data from six studied cores suggest major changes in the Indian monsoon and associated changes in surface productivity and deep-sea oxygenation. The proxy records suggest strong monsoon in the early Holocene and in the later part of the Holocene. We identified Bond event type abrupt changes in the Indian monsoon in proxy records from shallow sediments of the Gujarat and Konkan coasts.